
Hardening Kubernetes
Containers Security with Seccomp

eBook:

An often overlooked way to harden Kubernetes
containers’ security is by applying seccomp profiles. A
relatively ancient security mechanism in the Linux
kernel, seccomp (short for secure computing mode)
tells the Linux kernel which system calls a process can
make.

Restricting a process from accessing the kernel via
system calls restricts the attack surface, and can
prevent privilege escalation. The original seccomp was
very restrictive and unwieldy to use. The first version of
seccomp was merged in 2005 into Linux 2.6.12. It
was enabled by writing a "1" to /proc/PID/seccomp.
Then, the process could only make 4 syscalls: read(),
write(), exit(), and sigreturn()"). Today, the
seccomp-bpf extension, which uses the Berkeley
Packet Filter rules, is more commonly used as it allows
filtering system calls using a configurable policy.

1

https://en.wikipedia.org/wiki/Seccomp
https://lwn.net/Articles/656307/
https://lwn.net/Articles/656307/
https://lwn.net/Articles/656307/

Given the number of system calls invoked to execute a
container, each of which is a potential entry vector for
attackers, appropriately applying seccomp profiles goes a
long way to securing a container.

Customizing seccomp profiles, in effect, provides a
deeply embedded line of defense that adds a layer of
protection to your application in case of breach. As the
probability of any application being breached is constantly
rising, limiting the possible extent of a successful breach
should be applied at as many levels as possible.

Ever-increasing interconnections between applications,
and increased reliance on external service providers as
well as open-source images makes restricting seccomp
profiles crucial to improving cloud-native security.

Filtering system calls is not the same as sandboxing. Even
though it provides a mechanism to reduce the kernel's
exposed surface, filtering should be used in combination
with other system hardening techniques.

2
Number of System Calls Invoked over Container Execution Time

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/972399/Cyber_Security_Breaches_Survey_2021_Statistical_Release.pdf

3

For example, imagine that you are writing an applica-
tion that requires opening files. To open a file, you
need to create a system call to access a file, open()
syscall, and the kernel is responsible for performing it.
If, for example, you want to bar processes from
accessing files, you can create a seccomp profile
restricting their access. If any unauthorized program or
user tries to access a file, it can deny access, trigger
an alert, or even kill the application if that’s the desired
outcome.

Basically, seccomp profiles are enforcing defined
syscalls that your application requires from the kernel,
for example, read files, communicate, or any of the
about 200 syscalls that can be calibrated with
seccomp profiles.

On Kubernetes, in order to use the default seccomp
profile DevOps need to add a field in the pod security
context:
seccompProfile:
type: RuntimeDefault. You can either create your own
custom seccomp profile, or use the default one, from the
container runtime. Syscalls are typically not filtered, so
securing your workload and containers with seccomp
profiles considerably enhances clusters’ security.

Why Seccomp
is Crucial to
Kubernetes Security

4

What Are the Components of a Seccomp?
You can also choose to audit the syscalls

A seccomp is composed of three basic elements:

1. The defaultaction

2. The architectures AKA archmaps

3. The syscalls

Seccomp profiles are not native to Kubernetes, which
makes integrating seccomp profiles in your Kubernetes
security strategy slightly more complex.
The procedure recommended by Kubernetes is to define
a .json file to specify precisely which syscalls you want to
allow or block or audit.

An additional operation, installing that JSON file on the
node, is then required.

How to Increase
Kubernetes’ Security
with Seccomp

1. The defaultaction is self-explanatory and will be
applied by default to any system call not otherwise
defined. The two main defaultaction values are:

● SCMP_ACT_ERRNO to block system calls
 execution.
● SCMP_ACT_ALLOW to allow system calls
 execution.

Here is a list of the available actions with a short description of what they perform:

5

2. The architectures element defines the targeted
architectures based on system calls IDs. At the kernel
level, the filter is based on the system calls IDs, and
these might vary based on the architecture they are
running on, so selecting the right system call ID for
each architecture is crucial.

3. The element lets you define each system call
defaultaction and action, where the value in action
supersedes the value in defaultaction.
Selecting the most appropriate action enables
granular fine tuning of the kernel system calls filter.

SCMP_ACT_KILL_THREAD (or SCMP_ACT_KILL) The syscall is not executed, and the kernel terminates the thread that
made the system call. Other threads in the same thread group will
continue to execute.

Warning: Depending on the application being enforced (i.e.,
multi-threading) and its error handling, using the action to block
syscalls may affect the functioning of the overall application as it does
not trigger any alert.

6

SCMP_ACT_KILL_PROCESS (from Linux 4.14) Causes the kernel to immediately terminate entire processes, with a
core dump, when calling a syscall that does not match the configured
seccomp rules.

SCMP_ACT_TRAP Causes the kernel to decline executing the syscall and to send a
thread-directed SIGSYS signal to the thread that tried to make the call.
This requires setting various fields in the siginfo_t structure:

* si_signo will contain SIGSYS.
* si_call_addr will show the address of the system call instruction.
* si_syscall and si_arch will indicate which system call was attempted.
* si_code will contain SYS_SECCOMP.
* si_errno will contain the SECCOMP_RET_DATA portion of the filter
return value.

SCMP_ACT_ERRNO Causes the kernel to decline executing the syscall and opt instead to
return an error.

Warning: the type of error handling enforced by the application
determines if the failure to execute is silent or not. As for
SCMP_ACT_KILL above, silently blocking the syscall may affect the
application’s overall functioning.

SCMP_ACT_TRACE The decision on whether or not to execute the syscall will come from a
tracer. If no tracer is present, it behaves like SECCOMP_RET_ERRNO.
This risks being used to automate profile generation or to modify the
syscall being made. This action is not recommended when trying to
enforce seccomp to a line of business applications.

7

8

SCMP_ACT_ALLOW Causes the kernel to execute the syscall.

SCMP_ACT_LOG (from Linux 4.14) Causes the kernel to execute the syscall and log the filter return action.
This can come in handy for running seccomp in "complain-mode", as it
enables logging the syscalls are mapped (or catch-all) without blocking
their execution.
It can be used in conjunction with other action types to document all
allow and deny action.

9

It might sound tempting to apply seccomp at Pod level to
limit the workload, but that creates a number of issues.
When seccomp profiles are applied at pod level, they are
applied to each individual container in that pod which
creates a number of problems:

Should You Apply
Seccomp at the Pod
Level or at Container
Level?

● Kubernetes has some startup containers (specifically
pause containers) which require high permissions and
perform many syscalls that are not related to main
container business logic. Applying a seccomp profile
in the pod level will need to include all the syscalls
made by the pause container, which require you to
give a much more extensive and less restrictive
seccomp profile to the pod.
Note: This can be mitigated by setting the “pause”
container’s AllowPrivilege Escalation to false, but that
requires effecting changes in the source code.

● It requires excessive permissions, including :

○ capset
○ set_tid_address
○ setgid
○ setgroups
○ setuid

https://github.com/kubernetes/kubernetes/issues/84623

10

apiVersion: v1
kind: Pod
metadata:
 name: audit-pod
 labels:
 app: audit-pod
spec:
 securityContext:
 seccompProfile:
 type: Localhost
 localhostProfile: profiles/audit.json
 containers:
 - name: test-container
 image: hashicorp/http-echo:0.2.3
 args:
 - "-text=just made some syscalls!"
 securityContext:

 allowPrivilegeEscalation: false

Setting a Secopmp profile for a pod example

11

While many think that host based solutions are the optimal
solution we offer an alternative. Manually configuring
seccomp policies is time-consuming and, additionally,
might trip up a Kubernetes developer unfamiliar with
seccomp.

The Issues with
Manually Adding
Seccomp Policies to
Kubernetes

The procedure requires understanding exactly which
syscall does what, and how to configure it with the
proper IDs to achieve the desired result. Given the
number of possible syscalls, that knowledge is often
lacking, and as seccomp are not native to
Kubernetes, they have to be manually installed. This
means that, to configure and integrate seccomp
profiles properly, the developer has to:

● Find out which syscall each process is generating.

● Build the correct seccomp profile.

● Manually install it on each node.

● Manually install it on each new node in the future.

12

The result is a disastrous combination of:

● Difficult process: the complex and intricate
process of configuring and installing seccomp
profile is both time-consuming and prone to errors.

● High OPEX: the direct hour-cost needed to
configure and install seccomp profiles coupled with
the risk of application crash in case of error
generates high operating cost

● Lack of clarity: as each container’s seccomp
policies have to be defined individually, it generates a
lack of clarity and visibility in the overall seccomp
status.

● Manual process: both seccomp profile configuration
and their installation on nodes have to be performed
manually, which is time-consuming and increases the
risk for error.

13

At Cisco, we have developed a solution, Secure
Cloud-Native, to simplify the process of integrating
seccomp profiles to your Kubernetes security strategy by
simply selecting a recommended profile or defining a
custom profile directly from the UI.
Secure Cloud-Native then seamlessly installs those
seccomp profiles as needed.

The Simple Way to
Integrate Seccomp
into Your Kubernetes
Security strategy

In addition, the smart recommendation module will
monitor your low-level processes and identify each
syscall they perform. Based on this information,
Secure Cloud-Native will recommend the best
off-the-shelf seccomp profile for each process.

This means that, instead of having to evaluate and
define a seccomp profile for each syscall individually,
developers will be able to simply follow a template
procedure based on the actual processes at play. If
needed, advanced customization for complex specific
processes can can always be added.

Regardless of reliance on a template or custom
seccomp profile, Secure Cloud-Native will perform
the nodes' installation and update it when new nodes
are added.

14

This is an example of how Secure Cloud-Native works:

1. Click Seccomps
(on the right).

15

2. Click New
Seccomp profile.

3. Enter a name for
the profile.

16

4. Enter details for
the seccomp
policy as a JSON
block, and then
click FINISH.
For example:

JSON
{
 "defaultAction": "SCMP_ACT_LOG", <--- Default action is to log/detect the system call
 "architectures": [
 "SCMP_ARCH_X86_64" ,
 "SCMP_ARCH_X86" ,
 "SCMP_ARCH_X32"
],
 "syscalls": [
 {
 "names": [
 "arch_prctl" ,
 "sched_yield" ,
 "futex" ,
 "write" ,
 "mmap" ,
 "exit_group" ,
 "madvise" ,
 "rt_sigprocmask" ,
 "getpid" ,
 "gettid" ,
 "tgkill" ,
 "rt_sigaction" ,
 "read" ,
 "getpgrp"
],
 "action": "SCMP_ACT_ALLOW" <------------- Allowed system calls
 },
 {
 "names": [
 "add_key" ,
 "keyctl" ,
 "ptrace"
],
 "action": "SCMP_ACT_ERRNO" <------------- Blocked system calls
 }
]
}

In short Secure Cloud-Native will: Instead of spending precious time researching, tinkering,
configuring, and installing seccomp profiles, developers
can focus on supervising the solution activity, while
creating custom seccomp profiles for advanced complex
applications.

This is bound to save considerable time and drastically
reduce the potential for introducing human errors.

If you are interested in finding out more or in being
amongst the first users, contact us.

17

● Seamlessly install seccomp profiles on nodes.

● Shrink the time needed to configure and install
seccomp profile.

● Reduce error by automating a large part of the
process.

● Provide a far better bird eyes view of the seccomp
profiles.

● Provide smart recommendations/custom profiles
based on monitoring the low-level processes.

https://www.portshift.io/demo-request/

